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Material and Methods

Species Trees

All rooted species trees were taken from the literature. The mammalian tree from dos Reis et al’,
the cyanobacterial tree from Sz6lIGsi et al®., the archaeal tree from Williams et al® . and the fungal
tree was taken from Nagy et al*. The species trees can be found in
ftp://pbil.univ-lyon1.fr/pub/datasets/davin2017/SpeciesTree

Posterior samples for estimating CCPs

Conditional Clade Probabilities®®” (CCPs) were estimated from a distribution of gene trees
sampled by PhyloBayes. Gene family alignments of the different datasets were taken from the
original publications®*®. For each alignment an MCMC sample was obtained using PhyloBayes
(v3.2e)° using an LG+M4+| substitution model® with a burn-in of 1000 samples followed by at
least 3000 samples”®. We included all the gene families used in the original publications (SzéllSsi
et al®, Williams et al® and Nagy et al’). The .ale files containing the CCPs for each gene family can
be found in

ftp://pbil.univ-lyon1.fr/pub/datasets/davin2017/CCPs

Inferring transfers

To infer transfer events we use a hierarchical probabilistic model that models both the evolution
of gene phylogenies along the species tree as well as the evolution of sequences along gene
trees'’. We use a joint likelihood that takes into account i) the probability of a given gene tree
topology according to a probabilistic model of gene family evolution (a birth-death process that
models the duplication, transfer and loss of genes) and ii) the probability of the sequence
alignment according to a substitution model. Using such a joint likelihood approach allows one to
take into account uncertainty in both gene tree topology and gene tree-species tree
reconciliation explicitly during the inference of transfers. Reconciled gene trees, which explicitly
imply transfer events used in the downstream reconstruction of relative ages, are sampled
according to their joint likelihood using amalgamated likelihood estimation (ALE), a probabilistic
approach to exhaustively explore all reconciled gene trees that can be amalgamated as a
combination of clades observed in a sample of gene trees. In Szbllési et al. 2013”7 we
demonstrated using simulations that gene trees reconstructed using the above described joint
likelihood are substantially more accurate than those reconstructed using sequences alone.
Reconciled gene trees were sampled using the ALE undated?'?” software (available from the ALE
git repository: https://github.com/ssolo/ALE.git)’. 100 reconciled gene trees were sampled using
ALEmI_undated for each family. This allows us to assign a posterior probability to each event
(D,T,L) as the fraction of families in which a given event is found. Transfers detected with a
posterior probability <0.05 were discarded. Then, for a given transfer between species tree node
X and species tree node Y, a global frequency was computed by summing family-wise posterior
probabilities across all families. The .uml_recs files containing the reconciled gene trees can be
found in

ftp://pbil.univ-lyonl.fr/pub/datasets/davin2017/Reconciliations
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An example command is:

ALEml_undated CyanoSpeciesTree Family0000l.ale 100 _

Relative age constraints implied by transfers

The horizontal transfer of genes occurs between contemporaneous species, but this does not
mean that the branches inferred as the donor and recipient in reconciled gene trees have to be
contemporary'? (Fig. S8). A transfer leaving the species tree from branch a and arriving on branch
b will establish a constraint between the father node of branch a and the daughter node of
branch b. This implies that not all transfers carry dating information (Fig. S10). Transfers arriving
at leaves or transfers that correspond to constraints implied by the topology (i.e. from a node to
one of its own descendants) do not carry information on the relative age of nodes in the species
tree, and were discarded from the analysis. The data was handled with scripts written in Python
2.7 using extensively the Python library ETE3 '

Relative age constraints implied by fossil calibrations

To obtain relative age constraints from fossil calibrations, we used the 26 calibrations from dos
Reis et al'. These calibrations specify maximum (upper bounds) or minimum age calibrations
(lower bounds), or both, for nodes of the species tree. The first step to obtain relative constraints
between speciation nodes was propagating lower and upper calibrations up and down the tree
respectively. For instance, if a node has no calibration but one of its daughter nodes has a lower
calibration then this calibration was propagated up. If a node had an upper calibration, but the
daughter node did not, then this was passed down. We then evaluated all pairs of nodes i,j that
were not in a direct ancestral relationship and recorded an “older” relative constraint if the lower
bound calibration of node i was older than the upper bound calibration of .

MaxTiC

The MaxTiC' algorithm is a heuristic for inferring the relative ages of nodes on a species tree,
based on the time orders implied by the largest set of consistent transfers. A set of transfers is
called consistent if there exists a time order of the nodes of the species tree with which all
transfers from this set are compatible (meaning none of them goes back in time, S9 b). The
algorithm takes as inputs a species tree and a set of time-informative transfers (constraints) and
outputs a time ranking of speciation nodes that corresponds to the time orders implied by the
largest consistent subset of transfers. The sizes of these consistent subsets recovered by
MaxTiC in the different datasets are shown Table S2. The python implementation of MaxTiC
(available from the ALE github repository at https://github.com/ssolo/ALE.git) was run with the
following commands:

python maxtic.py species_tree constraint_file 1s=180

The time orders inferred using MaxTiC were then compared with the ranking of speciation nodes
given by the different molecular clock estimates to obtain Figure 3.
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Molecular clock estimates of the chronograms

Chronograms were sampled using PhyloBayes 3.3° under different clock models (autocorrelated
lognormal®'®, LN; Uncorrelated Gamma Multipliers'®, UGAM; White-noise'’, WN; Strict Clock®,
CL) and two types of prior on the divergence times (Uniform and Birth-death processes)'’. We
used two different models of protein evolution (LG' and GTR'). An example command is:

phylobayes3.3f/exe_lin64/pb -d ./Cyano_alignment.phy -T ./CyanoTree -x 1 15000
-ugam -unitime -1lg -rp 1000 1000 Cyano UGAM LG UNITIME

In Archaea we used the alignment of Williams et al®, which consisted of 10738 amino acid
positions, to obtain the species chronogram. We used chronograms sampled from five different
chains to obtain the 5000 chronograms used in the Figure 3 (discarding 1000 as burn-in from
each chain).>"®

In the other datasets, where the alignments were much longer, we sampled 4000 columns
randomly and used this sampled alignment as an input for PhyloBayes. A single chain was used
for each dataset. 5000 chronograms from the beginning of the chain were discarded as burn-in
and we sampled every second iteration of the remaining 10000, to obtain a distribution of 5000
chronograms.

In the main figure the model of protein evolution is LG and the prior on divergence times is
Uniform. The age of the root was arbitrarily set to 1000. The default options for prior on
substitution rates were used. All alignments can be found in
ftp://pbil.univ-lyonl.fr/pub/datasets/davin2017/Alignments.

Comparison of the clade-to-tip divergence between donors and recipients

To calculate the clad-to-tip divergence between donors and recipients, we fixed the topology of the
species tree and then computed branch-lengths in terms of amino acidic substitutions using the
concatenates of nearly universal families and a LG+[4+l model of protein evolution. These
calculations were made using IQ-TREE'™. Then, we traversed the trees in postorder and
computed the divergence of each inner node as the divergence assigned to its children nodes
plus the mean branch length of the subtending branches (leaves divergence was set to 0). Then,
we took all the constraints found in each data set and separated them into those constraints that
had been retained by the MaxTiC algorithm and those that had been discarded. We computed
the difference between the estimated clade-to-tip divergence of the donor and recipient clades
for each constraint. The trees can be found in:

ftp://pbil.univ-lyonl.fr/pub/datasets/davin2017/Species TreeSubstitutions

Correlation between fossil-based relative age constraints in mammals and
inferred substitutions per site

To calculate the correlation between fossil-based relative age constraints in mammals and
inferred substitutions per site, we used the 12 calibration points as given by dos Reis et al.” that
have both lower and upper bounds. We excluded the calibration point at the root, to allow direct
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comparison with the rankings for transfers (since the ranking of the root is always equal to 0). We
also removed the second oldest calibration point because of its high leverage. This resulted in 10
calibration points that were used in the analysis. For each calibration we took the mean point
between the upper and lower bounds to obtain the y coordinates. To obtain the substitutions per
site (x axis), we took the total branch length separating two species according to the strict
molecular clock consensus chronogram and multiplied it by the mean evolutionary rate v
(substitution per site / time) estimated by PhyloBayes. The strict molecular clock chronogram
was computed on a DNA alignment of universal gene families (used to obtain the species tree in
the original paper) without using any calibration points. 15000 chronograms were sampled from a
single chain, removing the first 5000 as the burn-in and then resampling one of every two of the
remaining 10000 chronograms.

Correlation between the speciation time order and the expected number of
substitutions per site in Cyanobacteria

To calculate the correlation between the speciation time order and the expected number of
substitutions per site in Cyanobacteria, we measured the speciation ranking given by the MaxTiC
algorithm, assigning a value of 1 to the speciation node that is closer to the leaves. The number
of substitutions per site was estimated the same way as for the mammalian dataset using the
sampled amino-acid alignment described in “Molecular clocks estimates of the chronograms”,
the LG model of protein evolution and the rooted species tree topology from Sz6llési et al.’ We
sampled 10 speciation nodes, to obtain a correlation comparable to the one previously described
in mammals where 10 calibrations had been used. The Spearman’s rank correlation was
calculated between the speciation ranking and the expected number of substitutions per site.
This procedure was repeated 10000 times. The points, p-value and Spearman’s rho represented
in the main figure correspond to the correlation with the median Spearman’s rho of the 10000
correlations. The distribution of p-values can be seen in S13 (lower panel).

Robustness analysis

To assess the support of the transfer-based constraints, we measured the support of each of the
relative age constraints using a jackknife approach, sampling without replacement half of the
gene families that contain transfers. We repeated this procedure 1000 times and then calculated
a set of compatible transfers for each sample. This method also provides us with a measure of
the sensitivity of the MaxTiC algorithm to the choice of different gene families. We quantified
support for each constraint as the fraction of times that it is observed in the 1000 different
random samples. A large fraction (between 40% and 47%) of the constraints appear in at least
95% of the samples (S20-S22 upper panel), indicating that transfer-based constraints are
generally robust to variation in the selection of families. We studied how different support
thresholds affect the agreement with molecular clock estimates. Varying the threshold we
observed a gradual tendency of increasing agreement for higher thresholds (S20-S22, lower
panels).
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Robustness of inferred relative node ages to an alternative root in
Cyanobacteria

Phylogenetic studies using outgroup rooting agree that Gloeobacter violaceus is the
earliest-diverging lineage within Cyanobacteria.?®%?9,39,40 This rooting, however, is sensitive to
the choice of out-group species®. In contrast to these results, recent studies using
genome-scale data and alternative rooting methods®** have suggested that Gloeobacter
violaceus may be a derived lineage within Cyanobacteria. In Figs 3 and 4 we use the root position
proposed by Szdllési et al.10 based on transfers, but we also analyzed the outgroup rooting (see
Fig.S24). Comparing the two rootings we found that over 95% (183 out of 191) of the supported
relative age constraints under the outgroup root (involving clades found under our alternative
root) were also supported under the alternative rooting of Szdllési et al. In particular, we still
recover a recent divergence for the Prochlorococcus-Synechococcus clade. These results, taken
together with our simulations', suggest that relative age constraints inferred from transfers are
robust to uncertainty in the position of the root.

Comparison of information on relative dates from different sources in
cyanobacteria

The clade representing heterocyst-forming cyanobacteria (green clade in Fig. S25) is one of the
few nodes in our datasets with a clear and ancient fossil calibration. Microfossil evidence from
West Africa chert places a minimum bound of 1,957 Mya (“The evolutionary diversification of
cyanobacteria: Molecular-phylogenetic and paleontological perspectives” Tomitani et al. PNAS
2006). As shown in the top inset of Fig 1. calibrating only the root of cyanobacteria to be between
3,850 Mya and 2,450 Mya (see e.g. “Timing of morphological and ecological innovations in the
Cyanobacteria: A key to understanding the rise in atmospheric oxygen” Blank &
Sanchez-Baracaldo, Geobiology 2010) produces a severe underestimate of the age of the
heterocyst clade. Under a strict molecular clock, including the fossil date as a minimum
constraint produces unrealistically narrow confidence intervals and drastically overestimates the
age of the unconstrained blue clade, which has been estimated to have diverged 1,020 - 640
Mya based on a dataset with broader taxonomic sampling and additional fossil calibrations (cf.
Table 3 in Blank & Sanchez-Baracaldo, Geobiology 2010). This demonstrates that it is necessary
to relax the assumption of the strict molecular clock, i.e. to assume that changes in evolutionary
rate occur along the phylogeny, with a corresponding increase in model complexity.

The blue and green clade shown in Fig. S25 are particularly relevant because the transfer-based
relative age constraints we derive for cyanobacteria in our manuscript constrain the blue clade as
well as its three ancestral nodes to be younger than the green clade. Examining the different
relaxations of the molecular clock considered in the manuscript we find that the transfer-based
constraints are met to different extents by different models (see Table S3 below).

Table S3 demonstrates two important effects: first, as shown in Figure 2a. on the next page using
the full agreement score, introducing the internal fossil calibration in the cyanobacterial dataset

page 5


https://paperpile.com/c/YnnakQ/KxHK+Pzwt+EpBd
https://paperpile.com/c/YnnakQ/1i4O
https://paperpile.com/c/YnnakQ/DFZO+doqT
https://paperpile.com/c/YnnakQ/64d9

together with appropriate relaxed clock models can significantly increase agreement with relative
transfer-based constraints. This increase in agreement, in fact, provides evidence of congruent
dating information in fossil and transfer based constraints in cyanobacteria. Second, however,
despite the significant increase in agreement, as can be seen in the last row of Table S3, and
more generally in Figure S26a., introducing all available fossil based calibrations and using the
best fitting relaxed molecular clock method still does not allow us to sample trees that
completely agree with transfer-based constraints.

To determine the limits of agreement between relaxed molecular clocks and transfer-based
relative constraints that can be reached under realistic runtimes we launched 10 independent
MCMC runs under the best-fitting lognormal model and ran the chains until 30,000 samples were
obtained per chain after discarding burn in (approximately one week of computation per chain on
3.7 GHz Intel Xeon processors with PhyloBayes v4.1). Unfortunately, and as shown in Figure
S26b., current approaches are limited to sampling chronograms well below 100% agreement.
Similar results were obtained for the Fungi and Archaea datasets under extensive sampling
(Fungi and Archaea exhibit similar agreement with a median of 0.78 and 0.72 respectively).

Estimating trees calibrated to geological time that carry partial information
from transfer-based relative age constraints

To obtain an initial sample of chronograms we used Phylobayes as described above with two
additional modifications. First, we added fossil calibrations where available (see Table S4 below).
Second, we introduced a subset of the transfer-based relative constraints which involve internally
calibrated nodes in the phylogeny by the following procedure: i) for minimum age calibrations all
nodes that are constrained to be older by transfer-based relative age constraints were also
assigned the same or higher minimum age constraint; ii) conversely, for maximum age
constraints that are constrained to be younger by transfer-based relative age constraints we
assigned the same or lower maximum age constraint. Introducing this calibration propagation
scheme in our datasets we found that it resulted in significantly higher agreement with transfer
based constraints in Fungi (median agreement increased from 0.76 to 0.78), but not
Cyanobacteria (median 0.729 vs 0.73). For Archaea the lack of internal calibrations prevented us
from applying the method. To estimate trees calibrated to geological time that carry partial
information from transfer-based relative age constraints we constructed consensus chronograms
of the subset of 5% of the sampled chronograms with the highest agreement with transfer-based
relative age constraints. Consensus chronograms are shown in Figs. S25-27. The complete set of
sampled chronograms and their agreement score can be downloaded from
ftp://pbil.univ-lyon1.fr/pub/datasets/davin2017/.
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Fig. S7: Mammal species tree with annotated inner nodes (strict molecular clock consensus
chronogram in a, and lognormal consensus chronogram in b). Rodents are highlighted in grey.
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Fig. S8: Transfers occur between contemporaneous species. Thick black lines show the
phylogeny of sampled species included in the phylogenetic analysis. Orange lines represent
extant but unsampled lineages. Dotted black lines represent extinct species. This figure is
illustrative, because in real data the proportion of extinct and unrepresented clades compared to
sampled diversity is much higher'2. An LGT event is indicated by the arrow. The donor lineage for
the LGT becomes extinct, but the LGT survives in descendants of the recipient lineage. Note that
the apparent donor species lineage on the represented tree is not contemporaneous to the
recipient species tree branch where the transfer arrives. This transfer event implies the constraint
that the yellow node is older than the blue node.
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https://paperpile.com/c/YnnakQ/vzNg

Fig. S9: Reconciliations considered by ALE undated. ALE undated uses a series of gene
Duplication, Transfer and Loss events to reconcile a gene tree with the species tree''. In contrast
to dated DTL methods, where transfers can only occur between branches that are contemporary,
in the undated method transfers can occur between any two branches in the tree (e.g. transfer in
b is allowed), with the exception of transfer where the recipient branch is an ancestor of the

donor branch??® (e.g. transfer in a is forbidden)
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Informative Non informative

Fig. S10: Informative vs. non-informative transfer. The informative transfer above (panel a,
same transfer as in Fig. S8) indicates that the yellow node must be older than the blue node.
Non-informative transfers (b) fall in two categories. The non-informative transfer in brown is
transferred into a leaf; since leaves have no descendants, such transfers do not imply a relative
age constraint. The transfer highlighted in purple is non-informative because it implies a
constraint that is already established by the position of the root.
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i
I
Contradictory Consistent

Fig. S11: Contradictory vs. consistent transfers. The transfers in a are contradictory because
they imply different orders of speciations. The brown transfer indicates that the pink node must
be older than the orange node. The purple transfer indicates that the orange node must be older
than the green node. Transfers in b, on the other hand, are consistent because there exists an
ordering of speciations that is compatible with the constraints implied by the transfers. The
purple transfer implies that the yellow node must be older than the blue node and the brown
transfer implies that the orange node must be older than the pink node.
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Cyanobacteria - Transfers inside MaxTiC Cyano - Transfers outside MaxTiC
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Fig. S12: Agreement between Molecular Clock estimates and the constraints established
by transfers selected (left column) and discarded (right column) by the MaxTiC algorithm.
The left column shows the same data as Figure 2, and is used here as a comparison on the same
scale as the right column. The agreement score of the prior distribution (blue) changes between
the two sets of constraints because on the left the set of selected transfers is consistent by
construction (i.e. agreeing with at least one chronogram), while on the right the set of discarded
transfers is not necessarily consistent. Taking this into account, it appears that molecular clocks
tend to agree with the transfers selected by the MaxTiC (left) and disagree, or at least not
significantly agree, with the discarded transfers (right).
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Gene transfers in Cyanobacteria
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S$13: Correlation between speciation time order indicated by transfers and substitutions per
site (Cyanobacteria). The p-value of the correlation in a is indicated by a red line in b. The
significance level at 0.05 is indicated by a black vertical line in b
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Gene transfers in Cyanobacteria
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Fig. S14: Correlation between speciation time order indicated by transfers and
substitutions per site for all speciation nodes (Cyanobacteria).
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Gene transfers in Archaea
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Fig. S15: Correlation between speciation time order indicated by transfers and
substitutions per site for all speciation nodes (Archaea).
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Gene transfers in Fungi
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Fig. S16: Correlation between speciation time order indicated by transfers and
substitutions per site for all speciation nodes (Fungi).
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Fig. S17: Agreement between clocks and transfer-based constraints in Cyanobacteria.
Different substitution models (LG and GTR) were used as well as different priors (uniform ~
UNITIME and Birth-Death ~ BD). The most noticeable effect seems to be a slightly different
behaviour of the strict clock when using different models of protein evolution, but the results
remain qualitatively similar. Colors correspond to the different types of clocks, as in Fig. 3
(orange strict clock, purple lognormal, green uncorrelated gamma-multipliers and gray
white-noise). The area delimited by the dashed lines corresponds to the 95% confidence interval
determined by the prior.
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Fig. S18: Agreement between clocks and transfers based-constraints for Archaea. See text
in Fig. S17.
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Fig. S19: Agreement between clocks and transfers based-constraints for Fungi. See text in
fig S17.
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Jackknife support of constraints in Cyanobacteria
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Fig. $20: Number of constraints in Cyanobacteria as a function of their support in the jackknife
analysis. The constraints found at least once among all the MaxTiC trees obtained in the
jackknife analysis are considered. In the lower panel we can see the agreement of those
constraints with the different clock models. The blue area corresponds to the 95% area delimited
by the prior, as indicated by the dashed lines in Figure 3 in the main text. The points for the
different molecular clocks show the median agreement of the distribution of chronograms
represented in Figure 3.
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Jackknife support of constraints in Fungi
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Fig. S22: Jackknife analysis for Fungi. See text in figure S20.
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Fig. S23. Taken from Chauve et al. 2017'*. Normalized Kendall similarity of the true ranked
tree and the obtained ranked tree using MaxTiC'4, as a function of number of transfers, per
branch and per family in simulated gene families (log10 scale). For each gene family the
number of inferred transfers per branch is computed. In this graph we can see that for a wide
range in the frequency of LGT we recover a tree very close to the real one. The levels of similarity
however never reach 1, suggesting that a small fraction of transfers inferred by ALE are spurious.
The boxplots correspond to the frequency of transfers found in two real datasets of Fungi and
Cyanobacteria. More details on this analysis can be found in the original paper.
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Fig. S24: Cyanobacteria species tree rooted in an alternative position, with Gloeobacter at the
root. Most highly supported constraints (95% in a Jackknife analysis as previously described)
using this tree are found also in the tree included in the main figure (183 highly supported
constraints out of 191). The change of the root has a marginal effect on dating, something
observed also in simulations in Chauve et al'.
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Figure. Figure S25. Phylogeny of 40 cyanobacteria with branch lengths in units of
substitution per site. The blue clade is estimated to have diverged between 1,020 - 640 Mya
(see e.g. Blank & Sanchez-Baracaldo, Geobiology 2010), while fossil evidence indicates that the
green clade diverged at least 1,957 Mya.
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Figure S26. Introducing the internal fossil calibration increases agreement with relative
transfer-based constraints. a) Agreement with transfer-based relative constraints for different
relaxed molecular clock models. As before “root” indicates molecular clock models with the root
constrained to be between 3,850 Mya and 2,450 Mya, while “root&internal” indicates a constraint
on the age of the green clade at 1,957 Mya in addition to the root constraints. b) Agreement with
transfer-based relative constraints from extensive sampling of over 300,000 chronograms under
the best fitting log-normal model with “root&internal” calibrations.
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Fig. S27: Dated species tree for Cyanobacteria based on the consensus of the subset of 5% of
the sampled chronograms with the highest agreement and fossil calibrations in Table S4. The
complete set of sampled chronograms and their agreement score can be downloaded from
ftp://pbil.univ-lyon1.fr/pub/datasets/davin2017/
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Fig. $28: Dated species tree for Fungi based on the consensus of the subset of 5% of the
sampled chronograms with the highest agreement and fossil calibrations in Table S4. The
complete set of sampled chronograms and their agreement score can be downloaded from

ftp://pbil.univ-lyon1.fr/pub/datasets/davin2017/
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Fig. S29: Dated species tree for Archaea based on the consensus of the subset of 5% of the
sampled chronograms with the highest agreement and fossil calibrations in Table S4. The

complete set of sampled chronograms and their agreement score can be downloaded from
ftp://pbil.univ-lyon1.fr/pub/datasets/davin2017/
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Dataset |Number of |Families Total Transfers |[Constraints [ Conflicting |Size of
genomes |with transfers filtered (b) |[(c) constraints | MaxTiC (e)
transfers |(a) (d)
Cyano (40 5322 17848.04 11084.83 4815.93 1493.06 3322.87
Archaea |60 10268 39370.58 16930.99 5123.59 1807.17 3316.42
Fungi 60 6321 35107 21800.35 7944.55 2116.77 5827.78

Table S1. Number of transfers and constraints. Each transfer is associated with a frequency
that is used to weight the transfer. In a the total weight of transfers found after reconciling all
families with their species tree. In b, the total weight of transfers that remain after applying the
cutoff of 0.05 to remove the less supported transfers. In ¢ the total weight of the time-informative
transfers. In d, the total weight of the time informative transfers that are discarded by the MaxTiC
algorithm. In e, the total weight of the time-informative transfers that are retained by the MaxTiC
algorithm.

Cyanobacteria (SzbllGsi) (Q:ﬁ;a:ﬁ:) (':l‘;"g%')

Molecular clock 40 genomes 60 genomes 60 genomes
model SREE MG 3316 transfers 5828 transfers

A D A D A D
Strict clock 249 79 598 276 640 166
Lognormal 261 67 646 228 638 168
Uncorrelated y 261 67 645 229 640 166
White-noise 261 67 611 263 637 169

Table S2. Number of highly supported relative age constraints in each dataset. Constraints
supported at 95% were compared with the time order of the consensus chronogram for the
different molecular clocks models. They were classified as agreeing (A) if the constraint was
respected by the consensus chronogram and disagreeing (D) if they were not. For a list of
constraints with resampling support see Tables S5-S7.
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root& root& root& root&
internal internal internal internal
0% 100% 58% 72% 63% 95% 100% 100%
0% 91% 35% 46% 44% 78% 100% 100%
0% 0% 5% 7% 3% 6% 59% 48%
0% 0% 0% 0% 0% 0% 0% 0%

Table S3. Fraction of sampled chronograms in which different transfer-based constraints
are satisfied in cyanobacteria. In the calibration row, “root” indicates molecular clock models
with the root constrained to be between 3,850 Mya and 2,450 Mya, while “root&internal” indicates
a constraint on the age of the green clade at 1,957 Mya in addition to the root constraints.

Akinete forming

cyanobacteria
Root | Great Oxygenation Event 2450 3850 27
116 Oldest Eukaryotes 1776 - 28
111 Dikarya 392.1 - 29
87 Paleopyrenomycites 400 - 30
114 Divergence of - 750 31
Chytridiomycota
Root Oldest Eukaryotes = 1891 28

Table S4. Fossils calibrations used.

Attached as separate files:

Table S5. Constraints and their support in Cyanobacteria
Table S6. Constraints and their support in Archaea
Table S7. Constraints and their support in Fungi

Additional material can be downloaded from:

ftp://pbil.univ-lyon1.fr/pub/datasets/davin2017/
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